PAU MURCIA

MATEMÁTICAS II

GEOMETRÍA ANALÍTICA

1) Septiembre 2012

CUESTIÓN A.2: [2,5 puntos] Determine la ecuación implícita (o general) del plano que contiene al punto A = (0,1,2) y es perpendicular a la recta

$$r: \begin{cases} 2x + y - z = -1 \\ x - y + z = 3 \end{cases}$$

2) Septiembre 2012

CUESTIÓN B.2: Considere las rectas r y s dadas por las ecuaciones

$$r: \frac{x}{7} = \frac{y}{a-4} = \frac{z+6}{5a-6}$$
 y $s: \frac{x-5}{3} = \frac{y-1}{-1} = \frac{z-6}{4}$.

- a) [2 puntos] Estudie la posición relativa de r y s en función del parámetro a.
- b) [0,5 puntos] Calcule el punto de corte de r y s en los casos en que se corten.

3) Junio 2012

CUESTIÓN A.2: Considere la recta r y el plano π dados por las ecuaciones

$$r: \frac{x+1}{2} = \frac{y-1}{-1} = \frac{z-2}{1}$$
 y $\pi: x-2y-z=4$

- a) [1 punto] Calcule el ángulo que forman la recta r y el plano π .
- b) [1,5 puntos] Determine el plano que contiene a la recta r y es perpendicular al plano π .

4) Junio 2012

CUESTIÓN B.2:

a) [1,25 puntos] Halle la ecuación implícita (o general) del siguiente plano

$$\pi: \begin{cases} x = 1 + 2\lambda - \mu \\ y = -3 + \lambda \\ z = 2 + 3\mu \end{cases}$$

b) **[1,25 puntos]** Determine la ecuación de la recta que es perpendicular al plano π y pasa por el punto (-1,2,3).

CUESTIÓN A.2: Determine el punto de la recta

$$r: \frac{x+3}{2} = \frac{y+5}{3} = \frac{z+4}{3}$$

que equidista del origen de coordenadas y del punto A = (3,2,1). [2.5 puntos]

6) Septiembre 2011

CUESTIÓN B.2: Considérense los puntos A = (2,0,1) y B = (2,0,3), y la recta

$$r: \frac{x+1}{-1} = \frac{y}{0} = \frac{z-2}{0}$$
.

Determine los puntos C de la recta r para los cuales el área del triángulo \widehat{ABC} es 2. (Indicación: hay 2 puntos C que son solución del problema). [2.5 puntos]

7) Junio 2011

CUESTIÓN A.2: Determine el plano que contiene a la recta

$$3x + 2y - 5z = -2 4x - 3y - 2z = -1$$

y es paralelo a la recta

$$\frac{x-5}{3} = \frac{y+2}{-2} = \frac{z-17}{-1}.$$

[2.5 puntos]

8) Junio 2011

CUESTIÓN B.2: Se llama *mediana* de un triángulo a cada una de las rectas que pasan por el vértice de un triángulo y por el punto medio del lado opuesto a dicho vértice.

- a) Calcule las tres medianas del triángulo de vértices A = (5, -1, 4), B = (-1, 7, 6) y C = (5, 3, 2). [1.25 puntos]
- b) Compruebe que las tres medianas se cortan en un punto (llamado *baricentro*) y calcule las coordenadas de dicho punto. [1.25 puntos]

9) Septiembre 2010

CUESTIÓN A.2: Calcular el punto más cercano al punto P=(1,0,-1) de entre todos los puntos del plano determinado por los puntos Q=(2,2,1), R=(0,1,2) y S=(0,0,1). Calcular la distancia de punto P al plano. **[2.5 puntos]**

CUESTIÓN B.2: Estudiar la posición relativa de las rectas

$$r: x+1=y=1-z$$

У

$$x = \lambda$$

$$s: y = 1 + \lambda$$

$$z = 2 - \lambda$$

y calcular la distancia entre ellas. [2.5 puntos]

11) Junio 2010

CUESTIÓN A.2: Calcular el punto más cercano al punto P=(1,3,0) de entre todos los puntos de la recta determinada por el punto Q=(-2,2,1) y el vector V=(1,1,1). Calcular la distancia del punto P a la recta. **[2.5 puntos]**

12) Junio 2010

CUESTIÓN B.2: Comprobar que las rectas

$$r: x+1=\frac{y+2}{2}=\frac{z-1}{3}$$

У

$$x = \lambda$$

$$s: y = 1 + \lambda$$

$$z = 2 - \lambda$$

no se cortan y no son paralelas. Calcular la distancia entre ellas. [2.5 puntos]

13) Septiembre 2009

CUESTIÓN 2.A. Calcule el punto de la recta r: $\frac{x-1}{2} = \frac{y}{3} = z-1$ más cercano al punto P=(1,-2,-7). [2.5 puntos]

14) Septiembre 2009

CUESTIÓN 2.B. Calcule la distancia entre las rectas $r_1: x=y=z$ y $r_2: \frac{x-1}{2} = \frac{y}{3} = z-1$. [2.5 puntos]

15) Junio 2009

CUESTIÓN 2.A. Calcule la ecuación del plano determinado por los puntos P=(1,0,1), Q=(2,2,2) y R=(1,-1,0) y la distancia entre dicho plano y la recta determinada por el punto S=(1,0,0) y el vector v=(1,1,0). **[2.5 puntos]**

CUESTIÓN 2.B. Calcule el punto del plano x+y+z=1 más cercano al punto (1,2,-3). Calcule la distancia entre ambos puntos. **[2.5 puntos]**

17) Septiembre 2008

CUESTIÓN 2.A. Dada la recta r determinada por el punto P=(1,2,-3) y el vector de dirección v=(1,-1,2), calcule el punto de r más cercano al punto Q=(1,0,2). **[2.5 puntos]**

18) Septiembre 2008

CUESTIÓN 2.B. Dadas las rectas r_1 : x=y=z y r_2 determinada por los puntos P=(1,2,3) y Q=(1,-1,0), calcule la ecuación de recta que une ambas rectas por el camino más corto. **[2.5 puntos]**

19) Junio 2008

CUESTIÓN 2.A. Calcule la distancia entre la recta r_1 : x+1=y=z-3 y la recta r_2 determinada por el punto $P_2=(1,-1,3)$ y el vector de dirección $v_2=(1,0,3)$. **[2.5 puntos]**

20) Junio 2008

CUESTIÓN 2.B. Calcule el punto del plano 2x+y-z=1 más cercano al punto (1,2,-3). [2.5 puntos]

21) Septiembre 2007

CUESTIÓN 2.A. Estudie si las rectas siguientes se cruzan, se cortan, son paralelas o son coincidentes y calcule la distancia entre ellas. **[2.5 puntos]**

$$r_1: \frac{x-1}{2} = \frac{y+2}{3} = 1 - \frac{z}{2}$$
 $x = \lambda$ $r_2: y = 1 + 3\lambda/2$ $z = 2 - \lambda$

22) Septiembre 2007

CUESTIÓN 2.B. Estudie si existe algún punto que pertenezca a la vez a los tres planos siguientes. Calcule los puntos en común (si existen). **[2.5 puntos]**

$$\pi_1: x-y+z=0 \quad \pi_2: z=2y \quad \pi_3: \ y=1+\lambda+\mu \\ z=1+2\lambda-\mu$$

CUESTIÓN 2.A. Un helicóptero situado en el punto P=(1,2,1) quiere aterrizar en el plano $\pi: x+y+3z=0$.

- i) Calcule la ecuación en forma continua de la recta de la trayectoria que le lleve al punto más cercano del plano π . **[0.75 puntos]**
- ii) Calcule dicho punto. [0.75 puntos]
- iii) Calcule la distancia que deberá recorrer. [1 punto]

24) Junio 2007

CUESTIÓN 2.B. Un asteroide, que sigue aproximadamente la trayectoria dada por la recta r:x+1=y/2=2z+1, se está acercando a un planeta situado en el punto P=(1,1,2).

- i) Calcule la distancia más cercana a la que se encontrará del planeta. [1 punto]
- ii) Calcule el punto de la trayectoria del asteroide donde se alcanzará dicha distancia mínima. [1 punto]
- iii) Si inicialmente el asteroide se encuentra en el punto Q=(-1,0,-1/2), calcule la distancia que deberá recorrer para alcanzar dicho punto. [0.5 puntos]

25) Septiembre 2006

CUESTIÓN 2.A. Calcule la distancia del punto P=(1,-1,3) a la recta r. [2.5 puntos]

$$r: \begin{cases} x = 1 + \lambda \\ y = 1 - \lambda \\ z = 1 + 2\lambda \end{cases}$$

26) Septiembre 2006

CUESTIÓN 2.B.

i) Demuestre que las rectas siguientes se cortan en un punto. ¿Cuál es ese punto? [1.5 puntos]

$$x = 2 - \lambda$$

$$r_1: y = 3 + \lambda$$

$$z = 1 + 2\lambda$$

$$x = 1 + \lambda$$

$$z = 6 + \lambda$$

$$z = 6 + \lambda$$

ii) Calcule la ecuación general del plano determinado por ambas rectas. [1 punto]

27) Junio 2006

CUESTIÓN 2.A. Las trayectorias de dos aviones vienen dadas por las rectas:

$$r_1: \begin{cases} x = 1 + \lambda \\ y = 1 - \lambda, r_2: \end{cases} \begin{cases} x = 1 - \lambda \\ y = \lambda \\ z = 1 \end{cases}$$

- i) Estudie si las trayectorias se cortan, se cruzan o son coincidentes. [1 punto]
- ii) Calcule la distancia mínima entre ambas trayectorias. [1.5 puntos]

CUESTIÓN 2.B. La trayectoria de un proyectil viene dada por la recta:

$$r: \begin{cases} x = 2 - \lambda \\ y = 3 + \lambda \\ z = 1 + 2\lambda \end{cases}$$

- i) Estudie si el proyectil impactará con la superficie determinada por el plano 3x+y-z=0. [1 punto
- Calcule el punto de impacto y la distancia recorrida por el proyectil desde el punto inicial ii) P=(2,3,1) hasta el punto de impacto. [1.5 puntos]

29) Septiembre 2005

1. Estudiar si las rectas:

$$L_1 = \begin{cases} x = & t \\ y = & t \\ z = 2 + t \end{cases}$$

$$L_1 = \begin{cases} x = & t \\ y = & t \\ z = 2 + t \end{cases} \qquad L_2 = \begin{cases} x + y - z + 1 = 0 \\ x + 2y + 3 = 0 \end{cases}$$

se cruzan. [1 PUNTO]

Encontrar la distancia entre dichas rectas.

[1.5 PUNTOS]

30) Septiembre 2005

CUESTIÓN 2.

1. Demostrar que las rectas:

$$L_1 = \begin{cases} x = 1 + t \\ y = 3 + 3t \\ z = 3 + t \end{cases} \qquad L_2 = \begin{cases} 3x - y + 4 = 0 \\ x - z + 4 = 0 \end{cases}$$

$$L_2 = \begin{cases} 3x - y + 4 = 0 \\ x - z + 4 = 0 \end{cases}$$

son paralelas.

2. Encontrar la ecuación de un plano paralelo al determinado por dichas rectas y que diste de él $\sqrt{6}$. [1.5 PUNTOS]

31) Junio 2005

CUESTIÓN 1.

Encontrar la distancia del punto P = (1, 1, 1) a la recta

$$L = \begin{cases} x = 1 + t \\ y = t \\ z = 1 - t \end{cases}$$

CUESTIÓN 2.

1. Demostrar que las rectas:

$$L_{1} = \begin{cases} x = 1 + 2t \\ y = 1 - t \\ z = t \end{cases} \qquad L_{2} = \begin{cases} x = t \\ y = 0 \\ z = 4 - t \end{cases}$$

se cortan en un punto ¿Cuál es ese punto?

[1 PUNTO]

2. Encontrar la ecuación del plano determinado por dichas rectas.

[1.5 PUNTOS]

33) Septiembre 2004

CUESTIÓN 1.

Encontrar la distancia del punto P(1,-1,2) al plano que contiene a la recta

$$\ell : \left\{ \begin{array}{lll} x & = & t \\ y & = & 2 & - & t \\ z & = & 3 & + & t \end{array} \right.$$

y pasa por el punto (2, 1, 3).

34) Septiembre 2004

CUESTIÓN 2.

Dadas las rectas:

$$\ell_1: \left\{ \begin{array}{lll} x & = & 4 & + & t \\ y & = & 7 & + & 2t & \text{y} \quad \ell_2: \left\{ \begin{array}{lll} x+y-5 & = & 0 \\ 3x+z-8 & = & 0 \end{array} \right. \right.,$$

se pide:

a) Demostrar que están contenidas en un plano cuya ecuación se determinará.

[1,5 PUNTOS]

b) Encontrar la perpendicular común a dichas rectas.

[1 PUNTO]

35) Junio 2004

CUESTIÓN 1.

a) Encontrar las ecuaciones paramétricas de la recta ℓ dada por la intersección de los planos

$$\pi_1: x + y - z - 1 = 0$$
 y $\pi_2: 2x - y + z = 0$.

[0,5 PUNTOS]

b) Encontrar la distancia del punto (1,0,1) a dicha recta.

[2 PUNTOS]

CUESTIÓN 2.

a) Demostrar que las rectas:

$$\ell_1 = \left\{ \begin{array}{lll} x & = & t \\ y & = & -t \\ z & = & 2 & + & t \end{array} \right. & \qquad \ell_2 = \left\{ \begin{array}{lll} x + y - z & = & 0 \\ 2x + y + 1 & = & 0 \end{array} \right.$$

se cruzan en el espacio.

[0,5 PUNTOS]

b) Encontrar la distancia entre dichas rectas.

[2 PUNTOS]

37) Septiembre 2003

CUESTIÓN 1.

Encuentre la distancia del punto P(1,0,1) a la recta determinada por los planos Π_1 , que pasa por los puntos A(1,1,1), B(0,1,1) y C(-1,0,0) y Π_2 , de ecuación x+y=2.

38) Septiembre 2003

CUESTIÓN 2.

Encuentre la distancia del punto P(0,6,1) al plano determinado por el punto A(0,1,3) y la recta L que pasa por los puntos B(1,0,1) y C(0,0,2).

39) Junio 2003

CUESTIÓN 1.

(a) Estudie si las rectas:

$$L_1 = \begin{cases} x = 1 - t \\ y = 1 - t \\ z = 2 \end{cases} \qquad L_2 = \begin{cases} x = t \\ y = 1 + t \\ z = 2 - t \end{cases}$$

se cruzan en el espacio.

[0.5 PUNTOS] [2 PUNTOS]

(b) Encuentre la distancia entre dichas rectas.

40) Junio 2003

CUESTIÓN 2.

Encuentre la ecuación de la parábola de foco el punto F(0, 2) y directriz la recta y = 1.

CUESTIÓN 1.

Estudie si las rectas:

$$L_1 = \begin{cases} x = 1 + 2t \\ y = 1 - t \\ z = 3 + t \end{cases} \qquad L_2 = \begin{cases} x - 2z = 3 \\ y + z = 0 \end{cases}$$

determinan un plano y, en caso afirmativo, encuentre su ecuación.

42) Septiembre 2002

CUESTIÓN 2.

- a) Encuentre la distancia del punto P(1,1,1) a la recta: $L = \left\{ \begin{array}{lll} x &=& 1 &+& t \\ y &=& -1 &+& t & \\ z &=& 3 &+& 2t \end{array} \right.$
- b) Compruebe si los puntos A=(1,-1,3) y B=(0,-2,1) pertenecen a la recta L y determine el área del triángulo PAB.

43) Junio 2002

CUESTIÓN 1.

Encuentre la distancia del punto P(1,1,1) al plano π determinado por las rectas:

$$L_1 = \begin{cases} x = 1 + t \\ y = 2 - t \\ z = t \end{cases}$$

$$L_2 = \begin{cases} \frac{x+1}{1} = \frac{y}{-1} = \frac{z-3}{1} \end{cases}$$

44) Junio 2002

CUESTIÓN 2.

Encuentre el lugar geométrico de los puntos del plano cuya suma de distancias a los puntos P(2,0) y Q(-2,0) es 7.

CUESTIÓN 1. Encuentre el plano que contiene a la recta:

$$L \equiv \begin{cases} x = 1 - t \\ y = 2 + t \\ z = 3 \end{cases}$$

y es paralelo a la recta determinada por los puntos: P(1,1,1) y Q(-1,0,2)

46) Septiembre 2001

CUESTIÓN 2.

a) Demuestre que las siguientes rectas se cruzan en el espacio:

$$L_{1} \equiv \begin{cases} x = t + 1 \\ y = -t \\ z = 2t + 2 \end{cases} \qquad L_{2} \equiv \begin{cases} x = t \\ y = 3t + 1 \\ z = -t - 1 \end{cases}$$

[1.25 PUNTOS]

b) Encuentre la distancia entre ambas rectas. [1.25 PUNTOS]

47) Junio 2001

CUESTIÓN 1.

a) Determine el lugar geométrico de los puntos del plano tales que la suma de sus distancias a los puntos P(2,0) y Q(1,1) es constante e igual a 2. [2 PUNTOS]

b) ¿Qué tipo de curva representa el lugar?. [0.5 PUNTOS]

48) Junio 2001

CUESTIÓN 2.

Encuentre la distancia del punto P = (1, 1, 1) a la recta de ecuación:

$$\begin{cases} x + y - z = 2 \\ 2x + y = 1 \end{cases}$$

CUESTIÓN 1: Encuentre la ecuación de la perpendicular común a las rectas:

$$L_1 \equiv \begin{cases} x = 5 + t \\ y = 6 + t \\ z = -1 + t \end{cases} \qquad L_2 \equiv \begin{cases} x = 1 + t \\ y = t \\ z = -1 - t \end{cases}$$

50) Septiembre 2000

CUESTIÓN 2: a) Estudie si la recta $r = \begin{cases} x + y = 0 \\ z = 1 \end{cases}$ y el plano π de ecuación x + y + z = 4 son o no paralelos. **(1.25 P)**

b) Encuentre la ecuación general del plano π' que contiene a r y es perpendicular a π . (1.25 P)

51) Junio 2000

CUESTIÓN 1: a) Definición de parábola. (0.5 P)

b) Encuentre la ecuación de la parábola que tiene por foco el punto F(-1,1) y por directriz la recta de ecuación y = x-2. (2 P)

52) Junio 2000

CUESTIÓN 2: a) Determine la distancia del punto A(12,-1,1) a la recta r que pasa por el punto P(1,1,1) y tiene como vector de dirección al vector $\mathbf{v}(3,4,0)$. (1 P)

b) Encuentre qué punto (o puntos) de la recta r determina (o determinan) junto con A y P un triángulo de área igual a 50 unidades cuadradas. (1.5 P)

53) Septiembre 1999

CUESTIÓN 1: Estudie, en función de los valores de "a" la posición relativa de las rectas:

$$L = \begin{cases} x = 1 + at \\ y = -1 - at \\ z = 1 + t \end{cases}$$

$$L' = \begin{cases} x + y + z = 2 \\ 3x - y + az = 5 \end{cases}$$

54) Septiembre 1999

CUESTIÓN 2: La parábola de ecuación $y^2 - 4y - 6x - 5 = 0$ tiene por foco el punto (0,2). Encuentre su directriz.

CUESTIÓN 1: Encuentre la recta que pasa por el punto (1,0,-1) y corta a las rectas L₁ y L₂ de ecuaciones:

$$L_{1} \begin{cases} 3x + 2y - z + 1 = 0 \\ 2x - y + z + 4 = 0 \end{cases}$$
 y
$$L_{2} \begin{cases} x = 3 + t \\ y = t \\ z = 1 + t \end{cases}$$

56) Junio 1999

CUESTIÓN 2: Dé la definición de hipérbola. Encuentre la ecuación de la hipérbola que tiene por focos los puntos F = (-3,0) y F' = (3,0) y que pasa por el punto $P = (8,5\sqrt{3})$.

57) Septiembre 1998

i) Deducir la ecuación vectorial y las ecuaciones paramétricas de una recta el espacio.
 ii) Encontrar la ecuación del plano que contiene a todas las rectas paralelas al plano x + y + z - 1 = 0 y que pasan por el punto (1, 2,3).

58) Septiembre 1998

2. Encontrar la ecuación o ecuaciones que verifican las coordenadas de los puntos del espacio que tienen la propiedad de equidistar de los planos Π_1 : 2x + 2y + z - 1 = 0 y Π_2 :4x - 3y = 0.

59) Septiembre 1998

3. Definición de elipse en el plano. Encontrar la ecuación de una elipse en un sistema de coordenadas apropiado. ¿Sabrías una forma de construir gráficamente una elipse?.

60) Junio 1998

Estudiar si las rectas:

$$L_{1} = \begin{cases} x = t \\ y = 1 - t \end{cases} \quad L_{2} = \begin{cases} 2x - y = 0 \\ x + z - 3 = 0 \end{cases}$$

se cruzan. En caso afirmativo encontrar su distancia.

61) Junio 1998

2. Encontrar la ecuación de la parábola cuya directriz es la recta y = x y cuyo foc es el punto (2, 0).

3. Hallar el ángulo que forman los planos π_1 , y π_2 , donde π_1 , es el plano determinado por los puntos (0, 0, 8), (-5, 1, 2) y (0, -2, 0) y π_2 es el plano perpendicular a la recta

$$x-1 = y-2 = \frac{z}{6}$$

que pasa por el punto (0,0,1)

63) Septiembre 1997

1. Estudiar si las rectas

$$L_1 = \begin{cases} x = t \\ y = -t \\ z = 3 \end{cases}$$

$$L_2 = \begin{cases} x = 2 - t \\ y = 3 + 2t \\ z = t \end{cases}$$

se cruzan y en caso afirmativo encontrar su distancia.

64) Septiembre 1997

Encontrar la ecuación del plano determinado por las rectas:

$$L_1 = \begin{cases} x = t \\ y = 3 - t \\ z = 2 + 2t \end{cases} \qquad L_2 = \begin{cases} x = -1 + t \\ y = -t \\ z = 1 + 2t \end{cases}$$

65) Septiembre 1997

3. Dada la hipérbola de ecuación $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, encontrar la ecuación de sus as Demostrar que la distancia de uno de los focos a una de las asíntotas es b.

66) Junio 1997

1. Encontrar la distancia del punto $P=(1,\,1,\,1)$ a la recta determinada por los planos $\pi\equiv x$ - y + 2 = 0, $\pi'\equiv y$ + z - 1 = 0

2.Discutir, según el valor del parámetro λ, la posición relativa en el espacio de los planos:

$$\pi_1 \equiv \lambda x + y + 3 = 0$$

 $\pi_2 \equiv x - y + \lambda z - 1 = 0$
 $\pi_3 \equiv 2x + 3y - \lambda = 0$

68) Junio 1997

3. La directriz de la parábola $y^2 + x^2 - 2xy - 4x - 4y = 0$ es la recta x + y = 0. Encontrar las coordenadas del foco.

69) Septiembre 1996

- (a) Encontrar la ecuación del plano determinado por el punto (1, 1, 1) y los vectores (1,0,0) y (2,1,-1)
- (b) ¿Cuál es la distancia del origen a dicho plano?.
 (Nota: Si no ha encontrado la ecuación del primer apartado puede suponer que el plano tiene por ecuación x y + z=1)

70) Septiembre 1996

2. Estudiar si las rectas

71) Septiembre 1996

- (a)Definición de parábola.
 - (b) Encontrar la ecuación de la parábola de directriz la recta y=0 y foco (1,1).

72) Junio 1996

 Encontrar la distancia del origen a la recta determinada por los planos Π₁ y Π₂ donde

$$\Pi_1 \equiv x + 2y + z + 4 = 0$$

y Π_2 es el plano que pasa por los puntos (1, 1, 1), (1, 2, 3) y (2, 0, 0).

2. Estudiar si las rectas

$$L_1 \ = \ \left\{ \begin{array}{lll} x & = & 1-t \\ y & = & t \\ z & = & 2+t \end{array} \right. \quad \text{y} \quad L_2 \ = \ \left\{ \begin{array}{lll} x & = & t \\ y & = & 3-t \\ z & = & t \end{array} \right.$$

se cruzan y, en caso afirmativo, encontrar su distancia.

74) Junio 1996

3. Encontrar el lugar geométrico de los puntos del plano cuya suma de distancias a los puntos P(3,0) y Q(-3,0) vale 10. ¿Cómo se llama a la curva resultante?. Dibujar un ejemplo de esa curva.